首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   158篇
  国内免费   383篇
化学   928篇
晶体学   29篇
力学   10篇
综合类   7篇
数学   2篇
物理学   173篇
  2024年   1篇
  2023年   25篇
  2022年   40篇
  2021年   95篇
  2020年   62篇
  2019年   57篇
  2018年   40篇
  2017年   61篇
  2016年   62篇
  2015年   51篇
  2014年   69篇
  2013年   66篇
  2012年   49篇
  2011年   52篇
  2010年   39篇
  2009年   42篇
  2008年   35篇
  2007年   51篇
  2006年   44篇
  2005年   23篇
  2004年   30篇
  2003年   31篇
  2002年   23篇
  2001年   15篇
  2000年   10篇
  1999年   15篇
  1998年   14篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1149条查询结果,搜索用时 15 毫秒
61.
本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料. 该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成. 将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 mA·g-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%. 进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.  相似文献   
62.
Hydrothermal carbonaceous materials and MnO2 have been proved to be promising adsorbents to remove organic dyes from wastewater. In this study, flexible MnO2 loaded hydrothermal carbon-coated electrospun poly-acrylonitrile(AC/MnO2/PAN) fiber membranes were fabricated by a facile one-step hydrothermal method and activated by NaOH solution. The composite fibers exhibited large adsorption capacity toward cationic dyes and excellent mechanical properties. The adsorption performance can be fitted well with pseudo-second-order model and Langmuir isotherm model. The maximum adsorption for methylene blue(MB), methyl violet(MV) and malachite green(MG) are 1173.27,1106.31 and 1129.89 mg/g, respectively, according to Langmuir fitting. The AC/MnO2/PAN fiber membrane also showed satisfactory performances for selective adsorption and recyclability. In addition, based on selective adsorption, the AC/MnO2/PAN fiber membranes that are repulsive to the anionic dye methyl orange(MO) can separate the MB/MO mixture solution by dynamic filtration. Thus, this work not only provides a facile strategy to fabricate large capacity adsorbents, but also demonstrates the potential applications in the dye wastewater treatment field.  相似文献   
63.
Energy storage will witness a leap of understanding of new battery chemistries.Considering the safety that cannot be compromised,new aqueous batteries may surface as the solutions to meet the immense market needs,where the growth of renewables is no longer limited by the lack of storage.Aqueous Zn-metal batteries are intriguing candidates to deliver the desirable properties and exhibit competitive levelized energy cost.However,the fact that most commercial Zn batteries are primary batteries states the difficulty of reversibility for the reactions of electrodes in such batteries.This article will highlight the practical needs that guide the development of storage batteries.The causes of irreversibility for both cathode and zinc metal anode are discussed,and the potential solutions for these challenges are summarized.Zn metal batteries may one day address the storage needs,and there exists a vast potential to further improve the properties of reactions in this battery.  相似文献   
64.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   
65.
Owing to the high specific capacity and energy density, metal oxides have become very promising electrodes for lithium‐ion batteries (LIBs). However, poor electrical conductivity accompanied with inferior cycling stability resulting from large volume changes are the main obstacles to achieve a high reversible capacity and stable cyclability. Herein, a facile and general approach to fabricate SnO2, Fe2O3 and Fe2O3/SnO2 fibers is proposed. The appealing structural features are favorable for offering a shortened lithium‐ion diffusion length, easy access for the electrolyte and reduced volume variation when used as anodes in LIBs. As a consequence, both single and hybrid oxides show satisfactory reversible capacities (1206 mAh g?1 for Fe2O3 and 1481 mAh g?1 for Fe2O3/SnO2 after 200 cycles at 200 mA g?1) and long lifespans.  相似文献   
66.
Transition metal phosphides (TMPs) are prospective anode materials for lithium-ion batteries (LIBs) due to their high theoretical capacities and low redox voltages. Herein, we report a template directing method to develop a tube-sheath hybrid composing of cobalt phosphide particles encapsulated in metal organic frameworks (MOFs) derived N-doped carbon sheaths (CoxP@NC). The utilization of directing template leads to a homogenous distribution of the subsequently formed cobalt phosphide particles, restrains the aggregation of cobalt phosphides, and thus results in the superb rate capability and cyclability. Contributable to the integrated merits of the interior downsized cobalt phosphide particles and the outer ZIF-67 derived porous carbon sheath, the volume expansion during cycling is effectively suppressed. The CoxP@NC hybrid shows superb electrochemical performance as anode material for LIB, with good reversible capacity of 928 mAh·g?1 after 100 cycles at 0.1 A g?1, and high stability of 526 mAh·g?1 after 600 cycles at 1.0 A g?1. This work provides a route for rational design of MOF derived carbon-based anode material for LIB, which could also be applied as a promising platform in diverse field.  相似文献   
67.
A two-dimensional photon counting imaging detector based on a Vernier position sensitive anode is reported. The decode principle and design of a two-dimensional Vernier anode are introduced in detail. A photon counting imaging system was built based on a Vernier anode. The image of very weak optical radiation can be reconstructed by image processing in a period of integration time. The resolution is superior to 100 μm according to the resolution test. The detector may realize the imaging of very weak particle flow of high-energy photons, electrons and ions, so it can be used for high-energy physics, deep space exploration, spectral measurement and bio-luminescence detection.  相似文献   
68.
GISAXS and SAXS studies on the spatial structures of Co nanowire arrays   总被引:2,自引:0,他引:2  
The spatial structures of magnetic Co nanowire array embedded in anodic aluminium membranes were investigated by grazing incidence small angle X-ray scattering (GISAXS) and conventional small angle X-ray scattering (SAXS) techniques. Compared with SEM observation, the GISAXS and SAXS measurements can get more overall structural information in a large-area scale. In this study, the two-dimensional GISAXS pattern was well reconstructed by using the IsGISAXS program. The results demonstrate that the hexagonal lattice formed by the Co nanowires is distorted (a ≈ 105 nm, b ≈ 95 nm). These Co nanowires are isolated into many structure domains with different orientations with a size of about 2 μm. The SAXS results have also confirmed that the nanopore structures in the AAM can be retained after depositing Co nanowires although the Co nanowires can not completely but only just fill up the nanopores. These results are helpful for understanding the global structure of the Co nanowire array.  相似文献   
69.
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%.  相似文献   
70.
Nano-crystalline FeOOH particles(5~10 nm) have been uniformly mixed with electric matrix of single-walled carbon nanotubes(SWNTs)for forming FeOOH/SWNT composite via a facile ultrasonication method. Directly using the FeOOH/SWNT composite(containing 15 wt%SWNTs) as anode material for lithium battery enhances kinetics of the Li+insertion/extraction processes, thereby effectively improving reversible capacity and cycle performance, which delivers a high reversible capacity of 758 mAh g-1under a current density of 400 mA g-1even after 180 cycles, being comparable with previous reports in terms of electrochemical performance for FeOOH anode. The good electrochemical performance should be ascribed to the small particle size and nano-crystalline of FeOOH, as well as the good electronic conductivity of SWNT matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号